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ON LEFT O-PRIME IDEALS OVER A NONCOMMUTATIVE
RING

ORTAC ONES AND MUSTAFA ALKAN

ABSTRACT. In this paper, we focus on a one-sided generalization of the concept of
prime ideal in a noncommutative ring, which is called a left O-prime ideal. Some of
its basic properties are investigated, pointing out both similarities and differences
between left O-prime ideals and their commutative counterparts. Mainly, we prove
a noncommutative generalization of Cohen’s Theorem for left O-prime ideals and
that any left ideal in R is the intersection of a finite number of left O-prime
ideals of a noncommutative ring R satisfying the ascending chain condition on
left O-radical ideals.
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1. INTRODUCTION

As is well-known, prime ideals form an important part in the commutative ring
theory. Basically, Cohen’s and Kaplansky’s Theorems about prime ideals in com-
mutative ring theory are useful to characterize the rings ([16],[17]). While there are
many reasons why this is so, in this paper we will focus on the fact that left O-prime
ideals control the structure of noncommutative rings. It is also well-known that the
set of nilpotent elements of a commutative ring forms an ideal coinciding with the
intersection of all the prime ideals; in noncommutative ring theory, however, the set
of nilpotent elements need not form an ideal and the intersection of prime ideals of
a ring is characterized by using m-system in [10]. A nonempty set S C R is called
an m-system if, for any a,b € S, there exists r € R such that arb € S. Then for any
ideal I of any ring R, it follows that

radr(I) = {s € R : every m-system containing s meets I}.

With this motivation, in this paper, we define new concepts for a left ideal I of a
ring R which are generalization of prime ideals, the radical of an ideal and nilpotent
elements of a ring. Then we study properties of these concepts and relations among
them. Let P be a left ideal of R. Then P is called a left O-prime ideal if for any
left ideals I,J such that PJ C P and IJ C P, either I C P or J C P holds.
We give an example of a left ideal which is a left O-prime ideal but not a prime
ideal of a ring R. Then we show that every maximal left ideal of a ring is a left
O-prime ideal. For a left ideal I of R and the set K = {a; € R : ap = a and
ai+1 € a;Ra;, i € N} of R such that INK = &, we verify that there is a left O-prime
ideal P of R containing I such that P N K = @. By using this result and under
some conditions, we characterize elements of Og(I), the intersection of left O-prime
ideals of R containing I. Moreover, we prove that any left O-radical ideal K (i.e.
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Ogr(K) = K) in R is the intersection of a finite number of left O-prime ideals if R
satisfies the ascending chain condition on left O-radical ideals.

2. THE O-RADICAL OF A LEFT IDEAL

The concept of a prime ideal in commutative ring extend to two generalizations
(prime ideal and completely prime ideal ) for noncommutative ring theory; an ideal
P of a ring R is called prime (completely prime) if either I or J (a or b) in P
whenever IJ C P (ab € P) for ideals I,J of R (a,b € R). In [3], R.L. Reyes
introduced completely prime right ideals as a one-sided generalization of completely
prime ideal in noncommutative ring and investigated some properties of this class.
In [3], a right ideal P is a completely prime right ideal if for any a,b € P with
aP C P, ab € P implies that either a € P or b € P. Since the notion of prime ideal
in noncommutive ring is more useful, now we give a generalization of a prime ideal.

Throughout the paper, R will denote a ring with identity.

Definition 2.1. A left ideal P of a ring is said to be a left O-prime ideal if for any
left ideals I, J such that PJ C P and IJ C P, either I C P or J C P holds.

It is clear that the notion is equivalent to the concept of prime ideal whenever P
is an ideal. Let P be a left ideal of R. Ir(P) is the sum of left ideals J of R such
that PJ is in P. Clearly, Ig(P) is a left ideal of R. Moreover, P is an ideal of R if
and only if Ir(P) = R.

Lemma 2.2. Let P be a left ideal of R which is not right. Then P is a left O-prime
ideal if and only if Ir(P) = P.

Proof. Tt is enough to show that Ig(P) = P for the completion. Then by the
hypothesis, we get Ir(P) # R. Take a € R\Ig(P) and b € Iz(P). Hence there are
elements p € P and = € R such that ¢ = pra ¢ P. Thus cRb C PRb C P. Since P
is a left O-prime ideal of R, we get either ¢ € P or b € P and so we get that b € P.
Then Ig(P) = P. O

Lemma 2.3. Let I be a left ideal of R. Then
i) Tr(T) C Tn(1%),
i) Ir(I) C Tr(I4(1)),
i) If f : R — S is a ring epimorphism, then f(Ir(I)) C Is(f(1))-
If Kerf C I, the converse is hold.

Proof. i) —i1) Tt is clear.

iii) Let f(J) € f(Ir(I)) and IJ C I. Thus f(IJ) = f(I)f(J) C f(I) and since
f(I) is aleft ideal of S, then f(J) € Is(f(I)). For the converse, let f(J) € Ig(f(I)).
Thus f(I)f(J) C f(I). Take z € I and 2z € J. There is an element y € I such that
f(zz) = f(y) and so f(zz—y) =0and zz—y € Kerf CTandzz € I. Thus IJ C I
and f(J) € (In(T). 0

It is clear that if I is a prime ideal, then I is a left O-prime ideal. The following
Lemma 2.4 shows that the converse does not hold.

Lemma 2.4. Any mazimal left ideal of a ring is a left O-prime ideal.

Proof. Let P be a maximal left ideal and I, J be left ideals such that PJ C P. If
both I and J are not in P, then P+I = R and P+J = R. Then R = (P+1I)(P+J) =
P + IJ. Therefore, I.J is not in P and so P is a left O-prime ideal of R. 0
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Lemma 2.5. Let I be proper ideal of R such that I? is a left O-prime ideal of R.
Then I is idempotent.

Proof. Since I? is a left O-prime ideal and I2I C I? and I.] C I?, we get that I C I?
and I = I°. 0

Proposition 2.6. Let R and S be any rings, ¢ : R — S an epimorphism and
Kerp C P. Then P is a left O-prime ideal of R if and only if ¢(P) is a left
O-prime ideal of S.

Proof. Let I and J be left ideals of S such that ¢(P)J C ¢(P) and let IJ C o(P).
Then ¢~ 1(I)p~!(J) C P and also Pe~1(J) C P. Since P is a left O-prime ideal of
R, we get that ¢~1(I) C P or ¢~ !(J) C P. Thus either I or J is in ¢(P) and so
©(P) is a left O-prime ideal of R.

Conversely let ¢(P) be a left O-prime ideal in S. Let AB be in P where A, B left
ideals and PB is in P. Thus ¢(A)p(B) C ¢(P) and ¢(P)p(B) C ¢(P). Therefore,
either ¢(A) or ¢(B) is in ¢(P). Since Kerp C P, Aor Bisin P. O

Corollary 2.7. Let R be a ring. Then P is a left O-prime ideal of R if and only if
P/N is a left O-prime ideal of R/N for all N C P C R.

Proposition 2.8. If P is a left O-prime ideal of R and I is a direct summand of
R such that I CIg(P), then I N P is a left O-prime ideal in I.

Proof. Let J; and Js be left ideals of I such that J1Jo C INP and (INP)Js C INP.
Then J1Jo C P and PJy; C P. Since J; and Js are ideals of R and P is a left O-prime
ideal of R, J; C P or Jo C P and therefore J; CINPor Jo CINP. O

We recall that

i) a sequence n(a) = {a,ay,....} is called a sequence of an element a of R if for all
1 €N, a;41 € a;Ra; and ag = a,

i1) for a left ideal I, an element a of R is called a strongly nilpotent on I if every
sequence of a intersects I. (i.e. n(a) NI # @.)

Definition 2.9. Let I be a left ideal of R. Then Or(I) is the intersection left
O-prime ideals of R containing I and I is a left O-radical if Og(I) = I.

It is clear that Og([) is in the intersection of prime ideals of R containing I since
every prime ideal of R is left O-prime. It is obvious that every nilpotent element
in commutative ring is a strongly nilpotent element on any ideal of R. Now we use
ONR(I) to denote the left ideal generated by the strongly nilpotent elements on I.

Theorem 2.10. Let R be any ring and let N, L be left ideals of R. Then Or(N)+
Ogr(L) = R if and only if N + L = R.

Proof. Suppose that Op(N)+ Or(L) = R and N + L # R. Thus, there exists a left
maximal ideal T of R such that N + L C T. Since T is a left O-prime ideal of R,
we have Or(N) C T and Ogr(L) C T. Then

Ogr(N)+ Ogr(L) CT.

This is a contradiction. Then N + L = R.
Since N C Or(N), L C Or(L) and N + L = R, it follows that

Ogr(N)+ Ogr(L) = R.
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Lemma 2.11. Let I be a left ideal of R and K be any multiplicative set with INK =
&. Then there is a left O-prime ideal P of R containing I such that PN K = &.

Proof. Consider the set
U={L:LNK=¢ and L is a left ideal of R}.

By Zorn’s lemma, there is a maximal element P in the set W. Let A and B be left
ideals such that PB C P. Assume that both A and B are not in P and we prove
that AB is not in P. Then both (P + A)N K and (P + B) N K are not empty. Let
a€(P+A)NKandbe (P+ B)NK. It follows that ab € K N ((P + A)(P + B)).
This means that AB is not in P and so P is a left O-prime ideal of R. O

Lemma 2.12. Let I be a left ideal of R and K = {a; € R : ap = a and a;+1 € a;Ra;,
i € N} be a set of R. If the intersection of I and K is an empty set, then there is a
left O-prime ideal P of R containing I such that PN K = @.

Proof. Consider the set
VUV ={L:LNK =@ and L is a left ideal of R}.

By Zorn’s lemma, there is a maximal element P in the set . Let A and B be left
ideals such that PB C P. Assume that both A and B are not in P and we prove
that AB is not in P. Then both (P + A) N K and (P + B) N K are not empty. Let
rn € (P+A)NK and sory € (P+A)NK for all t > n. Similarly, let r, € (P+B)NK
and so r, € (P + B) N K for all v > m. Now assume that n < m. We observe that
Tm41 = lrpkry, for some [,k € R and so 11 in K N ((P + A)(P + B)). Therefore,
AB is not in P and so P is a left O-prime ideal of R. O

Lemma 2.13. Let I be a left ideal of R. Then Or(I) C ONRg(I).

Proof. Let a; be in Or(I) but not be a strongly nilpotent element on I. Then there
is a sequence K = {a; € R: a9 = a and a;+1 € a;Ra;, i € N} such that I N K = @.
Then there is a left O-prime ideal P of R containing I such that PN K = @. This
is a contradiction with a; € Og(I). O

Lemma 2.14. Let I be a left ideal of R. Then ONg(I) = Ogr(I) if one of the
following conditions holds;

1) aza ¢ P whenever xa ¢ P where P is left O-prime.

2) Ewvery left O-prime ideal P which is not ideal is a mazximal left ideal.

Proof. Tt is enough to show that ONg(I) C Og(I).

Let a € ONg(I) but not in Og (I). Then there is a left O-prime ideal P of R
containing I such that a is not in P. For a left O-prime ideal P, we have two cases:

a) Let PRa C P. Since aRa is not in P, there is a non zero element a; = atga €
aRa but not in P. Then PRa; C PRa C P and so we get that ajRa; is not in P,
hence there is a nonzero element as = ajtia; € ajRa;. By using this method, we
get the sequence 7(a) of a is the set n(a) = {a; : a1 € a;Ra; and ap = a, ¢ € N}
but n(a) does not contain any element of I since for all i € N, a; ¢ P. Therefore a
is not a strongly nilpotent element of R on I, a contradiction.

b) Let PRa & P.

i) Let the condition in (1) hold. There are elements pg € P and z € R such that
(pox)a ¢ P and so choose a1 = a(poz)a ¢ P by the condition (1).
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1) Let the condition in (2) hold. Then P is a maximal left ideal of R and
P+ PRa = R. Hence 1 = m + ka for some m € P and k € PR and so a — am =
aka ¢ P. Now choose a1 = aka.

If PRa; C P, then using the argument in (a), we may choose an element ag =
ajtay; ¢ P where t € R.

If PRay g P, then following the procedure in (b) for a1, we may get an element
ag = ayta; ¢ P where t € R.

Therefore, we have the sequence 7(a) of a as the set n(a) = {a, a1, az,... : aj+1 €
a;Ra; and ap = a, i € N} but n(a) does not contain any element of I since for all
i € N, a; ¢ P. Therefore a is not a strongly nilpotent element of R on I. O

The following example shows that there is a left O-prime ideal satisfying the
condition in (1).

F F F
Example 2.15. Let R = |0 F F| be a ring where F' is a field. Then P =
0 0 F

o oM
SE S

F
0
0

s a left ideal but not a right ideal. Let us compute the left ideal Ir(P) = {a € R :
PRa C P}.

a b c
Ifq= |0 d e| isinlg(P), then P C PRqC P.
00 f
0 0 0| [a b ¢ 0 00
01 0/[0 d e|l=1|0d e|leP
0 0 Ol [0 0 f 0 00
a b c
if and only ife=0. Thusq= |0 d 0] and so
00 f
0 0 0| fa b ¢ 0 0O
¢1=10 0 1] |0 4 0 =({0 O f
0 0 1| (0 0 f 00 f

Hence q1 € Rq and so q1 € Ig(P) since PRq1 € PRq C P. Therefore, f =0 and
so q € P. This means that Ig(P) = P and so P is a left O-prime ideal.

0 00 0 00 0 00
Letg=10 1 1|,p=(0 1 0|,z= |0 0 1. Then both xg and
0 01 0 00 0 00
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pxg are not in P and so this means that PRg is not in P. Also we get that gpzg
is not in P. Therefore, the condition (1) in Lemma 2.14 is not satisfied in general.

000 000
Ifn =10 0 1| ¢ P,go= |0 1 0| ¢ P, then gog1 ¢ P but g1g2g1 is in P.
0 00 0 01

Theorem 2.16. Let P be a left ideal of R, which is not a right ideal. Suppose that
P is mazximal among all left ideals in R that are not finitely generated. Then P is a
left O-prime ideal of R.

Proof. Suppose that Ir(P) # P and so b € Ig(P) — P. Let a be in R such that
aRb is in P. Then P + Rb is different from P and P + RD is finitely generated. Let
{p1 + r1b,...,pt + r¢b} be a generating set for P + Rb where p; € P and r; € R.

Define the set K = {y € R : yb € P}. Then clearly, K is a left ideal containing
both P and a. Assume that a is not in P. Otherwise, P is a left O-prime ideal.
Hence K is a finitely generated left ideal of R since P + Ra # P.

Take an element x in P ; P + Ra C K. Since K is finitely generated, we get
x = uy(p1 + r1b) + ... + ue(pr + rb) for some u; € R and so

x — (u1pr + ... +wpe) = (w1 + ... + wry)d

Hence (uirq + ... + wry) € K. This means that © € Rp; + ... + Rp; + Kb
and so P = Rp; + ... + Rpy + Kb which implies that P is finitely generated, a
contradiction. 0

Corollary 2.17. If every left O-prime ideal which is not a right ideal in a ring R
is finitely generated, then R satisfies ascending chain condition on left ideals which
are not right ideals.

Proof. Let every left O-prime ideal in a ring R be finitely generated. Define the
set Q = {I; : I; is a left ideal of R but not finitely generated}. Q # @, J = UI;
is not a finitely generated ideal in R and J is the upper bound in the set 2. By
Zorn’s Lemma, there is a maximal element P in the set ). By Theorem 2.16, P is a
left O-prime ideal of R and then R satisfies ascending chain condition on left ideals
which are not right ideals. 0

This leads to a noncommutative generalization of Cohen’s Theorem for left O-
prime ideals.

Corollary 2.18. (A noncommutative Cohen’s Theorem for left O-prime ideals) If
every left O-prime ideal in a ring R is finitely generated, then R is a left Noetherian
ring.

Theorem 2.19. Let R be a noncommutative ring satisfying the ascending chain
condition on left O-radical ideals. Then any left O-radical ideal in R is the inter-
section of a finite number of left O-prime ideals. In particular any left ideal in R is
the intersection of a finite number of left O-prime ideals.

Proof. If not, let a left ideal I be maximal among those for which the assertion
fails. Clearly, I is not a left O-prime ideal and so Ig(I) # I. Take a € R — I and
belr(l)—I withaRb C I. Let J be a left O-radical of I+ Ra and K a left O-radical
of I + Rb. Since I is maximal, J and K are each expressible as a finite intersection
of left O-prime ideals. We reach a contradiction proving that I = J N K.
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Let x € JNK. Then x is a strongly nilpotent element on both I 4+ Ra and I + Rb.
If T = {ai: ait1 € a;Ra; and ag = z, i € N}, then there exits a, € (I + Ra)NT
and so a; € (I + Ra) N T for all t > n. Similarly, there exists a,,, € (I + Rb)NT
and so a, € (I + Rb)NT for all v > m for some n,m € N. Now assume that
n < m. Then we observe that a1 = laykay,, € T for some I,k € R and 8o am+1
in TN((I+ Ra)(I+ Rb)) =T nNI. Therefore, z is in a left O-radical of I and so in
I O
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